Меню

Эпюра скоростей течения реки

ТЕЧЕНИЯ В РЕЧНОМ ПОТОКЕ

В речных руслах течение воды возникает в связи с продольным уклоном. Казалось бы, что под влиянием уклона скорость движения потока будет увеличиваться все больше и больше. Однако этого не происходит. Энергия речного потока расходуется на внутреннее тре­ние воды и на преодоление трения ее о дно и берега. Поэтому в целом ускорения движения воды в речном потоке не наблюдается, однако может возникнуть местное ускорение, например, на перекатах и поро­гах.

В природе различают два режима движения жидкости: ламинар­ное, (параллельно-струйчатое) и турбулентное (беспорядочно-вихре­вое).

При ламинарном режиме отдельные струйки воды движут­ся параллельно друг другу, не смешиваясь между собой. Скорости от­дельных частиц воды постоянны по величине и направлению. У стенок скорости равны нулю, затем они постепенно увеличиваются, достигая

Рис. 8. Внутренние течения на изгибах русла

Наибольшего значения в середине потока. В природе ламинарное те­чение встречается при движении воды по порам грунта. Оно возможно лишь при очень малых скоростях. Например, по расчетам, водный по­ток глубиной в 1 м при песчаном русле и температуре 20° С будет иметь ламинарное движение в том случае, если скорость не превышает 0,5 мм/с. При большей скорости движение воды будет турбулентным.

При турбулентном виде движения частички воды переме­щаются беспорядочно, постоянно перемешиваясь и образуя в отдель­ных случаях вихри. Скорость их непрерывно и мгновенно изменяется по величине и направлению (т. е. происходит пульсация скорости). В реках движение воды всегда турбулентное. Степень турбулентности, или интенсивность перемешивания масс воды речного потока, зависит от шероховатости русла и скорости течения. При неровном русле и большой скорости течения степень турбулентности выше, при отно­сительно ровном русле и небольшой скорости течения—ниже.

Скорость перехода одного движения в другое при данной глубине потока называется критической. При увеличении глубины кри­тическая скорость уменьшается. По данным М. А. Великанова, пере­ход ламинарного движения потока в турбулентное и обратно при глу­бинах 10, 100, 200 см происходит с критическими скоростями, равными соответственно 0,4; 0,04, 0,02 м/с.

Общее течение речного потока вдоль русла при своем движении видоизменяется, в нем создаются внутренние течения. Причинами воз­никновения таких течений являются изгибы русла, подъем и спад уров­ней, наличие в потоке слоев воды с разной температурой, вращение Земли, а также воздействие рельефа дна, ветра, сооружений и др.

Под влиянием центробежной силы на изгибах русла образуется поверхностное течение, направленное от выпуклого берега к вогнутому, а у дна, наоборот, — от вогнутого к выпуклому (рис. 8). -За счет трения о дно скорость глубинного течения от вогнутого берега к выпуклому меньше по сравнению с поверхностным, поэтому у вы­пуклого берега происходит повышение уровня и создается попереч­ный уклон поверхности воды. На­пример, для реки, имеющей радиус кривизны 1000 м, скорость течения 1 м/с и глубину 5 м, скорость попе­речного поверхностного течения со­ставляет около 3,8 см/с, а у дна — 3,3 см/с. Взаимодействие продольно­го течения с поперечным придает По­току винтовой характер. Так как речное русло состоит из извилин, пе­реходящих одна в другую, направле­ние поперечного течения постоянно меняется.

Рис. 9. Внутренние течения при подъемах и спадах воды в русле

В результате вращения Земли в речных руслах возникает сила инерции, направленная к право­му берегу, и под действием этой силы

создается постоянное поперечное те­чение. Последнее направлено в по­верхностном слое к правому берегу, а в придонном — к левому. Скорости поперечных течений невелики. Напри­мер, для реки с глубиной 5 м и ско­ростью течения 1 м/с поперечные ско­рости у поверхности согласно расче­ту составляют около 0,25 и у дна — 0,23 см/с.

Взаимодействие продольного течения воды с поперечным также

придает потоку винтовой характер, но очень слабый.

Если направление поперечного течения на изгибах русла совпада­ет с направлением поперечного течения от вращения Земли, то вну­треннее винтовое течение усиливается, если же не совпадет — то уменьшается.

При подъемах воды возникают два винтовых течения, идущие от середины вверх, у поверхности — к берегам, а по дну — к середине (рис. 9).

При спаде воды наблюдаются обратные циркуляцион­ные течения.

Следует иметь в виду, что движение воды в речном потоке имеет более сложные формы по сравнению с описанными выше; внутренние течения постоянно видоизменяются, затухают и возникают вновь.

При турбулентном характере движения речного потока, как было уже указано, скорость каждой частички воды непрерывно меняется. Однако если в какой-либо точке потока прибором измерять пульсирую­щую скорость достаточно долго, то можно получить среднюю скорость в данной точке, имеющую определенную величину и направление.

Для представления о распределении скоростей течения в речном русле измеряют их осредненные значения и строят графики. Если измерить осредненные скорости течения в не­скольких точках, затем отложить их от прямой линии в соответствую­щем масштабе на чертеже в виде отрезков, то, соединив концы этих отрезков плавной кривой, получим график скоростей, называемый годографом или эпюрой скоростей.

Обычно эпюры скоростей строят по вертикали, живому сечению и в плане.

В открытых руслах средняя скорость по вертикали Одред (рис. 10, а) обычно находится на расстоянии 0,6 глубины h от поверх­ности. Наибольшая скорость по вертикали и дце располагается обыч­но несколько ниже поверхности, так как на скорость у поверхности Уцов влияют сила трения о воздух и поверхностное натяжение воды. Наименьшая скорость течения — у дна. Такое распределение скоростей течения по вертикали подвергается значительным изменениям под дей­ствием различных факторов. Например, при ветре, направление ко­торого совпадает с направлением течения, поверхностная скорость уве­личивается и наоборот. Неровности дна и водная растительность так-

Рис. 10. Распределение скоростей течения по вертикали в открытом речном русле (о) и русле с ледяным покровом (б)

же вызывают перераспределение скоростей. В местах сжатия потока, например между устоями моста, скорости течения увеличиваются.

В период скорость течения вблизи ледяного покрова быва­ет такая же, как у дна, или меньше, а наибольшая скорость Vmax (рис. 10, б) находится на расстоянии 0,3—0,4 глубины русла.

Изотахи — линии равных скоростей — распределяются по живому сечению реки в соответствии с очертанием попереч­ного профиля русла. Для открытого русла изотахи имеют вид разом­кнутых кривых (рис. 11, а), для русла под ледяным покровом — зам­кнутых кривых (рис. 11,6).

Если определить средние скорости течения по вертикалям по всей ширине русла, затем отложить их в виде отрезков на плане реки или от горизонтальной линии вверх или вниз, то получится эпюра средних скоростей речного потока в плане (рис. 12). Такую эпюру можно построить и для наибольших скоростей. Обычно очертание эпюры по­добно очертанию живого сечения реки. Средние скорости течения уве­личиваются от берегов к середине русла. Местам с наибольшей глу­биной, как правило, соответствуют наибольшие скорости течения.

Линию, соединяющую точки с наибольшей скоростью течения в смежных живых сечениях русла, называют динамической осью речного потока. Наибольшие скорости течения рас­пределяются в живых сечениях весьма разнообразно, поэтому динами­ческая ось изгибается как в плане, так и по вертикали.

Рис. 11. Распределение скоростей течения по живому сечению реки

В судоводительской практике употребляется понятие стре­жень реки. Под ним подра­зумеваются места в реке с наиболь­шими глубиной и скоростями те­чения.

Обычно под скоростью течения речного потока понимают среднюю скорость по всему живому сече­нию. Зависимость скорости тече­ния от продольного уклона, глу­бины и шероховатости русла вы­ражается формулой Шези:

Читайте также:  Высокий берег реки участок

Рис. 12. Распределение скоростей те­чения речного потока в плане

где См — коэффициент Шези (скоростной множитель);

ρ —гидравлический радиус, м. Представляет собой отношение живого се­чения русла со, м 2 , к его смоченному периметру (контуру) x, м;

l — поверхностный уклон.

Ширина реки значительно больше высоты берегов, поэтому вместо всего периметра x часто принимают только ширину реки В; при деле­нии к на В получают среднюю глубину hср. Следовательно, р

Из уравнения (8) видно, что при увеличении уклона / увеличива­ется скорость течения и наоборот. При увеличении расхода воды Q увеличивается площадь живого сечения, а следовательно, и р w

hср. Отсюда следует, что при увеличении глубины скорость течения увели­чивается, а при уменьшении — уменьшается.

Скоростной множитель См учитывает влияние шероховатости русла. Для ориентировочных расчетов его можно определить по формуле Базена:

где у — коэффициент шероховатости, учитывающий состояние поверхности русла. Для земляных русл у= 1,3, для русла с крупногалечным дном y = 1,75, для пойм с растительностью у = 2 — 4 и т. д.

Таким образом, чем больше шероховатость русла, тем меньше Сд, и, как следует из формулы Шези, меньше средняя скорость течения.

Скорости течения, м/с (км/ч), на отдельных участках крупных рав­нинных рек характеризуются следующими ориентировочными дан­ными:

Свободный плес в половодье . . . . . . 1,5—2,0(5,4—7,2)

Свободный плес в межень . 0,25—0,4(0,9—1,14)

Перекаты с быстрым течением . 1,5—2,0(5,4—7,2)

Перекаты с тихим течением . 0,5—1,0(1,9—3,6)

Тиховоды — медленные тече­ния, образующиеся за выпуклыми, бе­регами, крупными песчаными отложе­ниями в русле и т. п. При движении судна вверх для увеличения скоро­сти движения следуют по тиховоду.

Водоворот — постоянное вра­щательное движение воды в русле. Водовороты нередко создают глубо­кие ямы (омуты) и являются типич­ными для горных и полугорных рек.

Рис. 13. Суводь за рынком горы

Суводь — водное пространст­во с вращательным движением во­ды (рис. 13), обычно находящееся за выступами берегов, мысами, вы­пуклыми берегами, сильно вдающи­мися в русло. В этих местах тече­ние, с большой скоростью обтекая берег, встречает на своем пути выступ и создает перед ним подпор воды и повышение уровня. Проходя выступ, водный поток отклоняется от него и по инерции проходит не­которое расстояние. За выступом уровень воды понижен, из-за чего в низовой части суводи вода затягивается из основного потока, а в верх­ней части, наоборот, — из области суводи в основную струю потока. Этот процесс происходит непрерывно и вызывает вращательное дви­жение воды.

При вращении воды в суводи дно оказывает тормозящее действие. Вследствие этого ближе к поверхности суводи скорость вращения воды и центробежные силы увеличиваются. Под воздействием центробежных сил происходит большее отбрасывание воды от оси суводи у поверх­ности и меньшее — у дна. Снизу вверх вдоль оси суводи образуется восходящий поток, восполняющий отбрасываемую воду. Он размывает дно, захватывает продукты размыва, создавая воронкообразное углуб­ление дна.

При уменьшении скорости вода плавно обтекает выступ, образуя за ним тиховод.

У вогнутых берегов в крутых изгибах русла реки также образуют­ся суводи. В отличие от суводей, расположенных за выступами бере­гов, здесь нисходящие токи воды спускаются в центре суводи ко дну и растекаются в стороны. Этот тип суводи с отчетливо выраженной воронкой на поверхности воды иногда называется омутом.

Суводи у вогнутых берегов образуются, когда нарушается условие плавного обтекания берегов излучины. Это условие удовлетворяется,

если радиус кривизны излучены R более чем втрое превосходит ширину русла В, т. е. R/B> 3. При меньшем радиусе R у вогнутого берега

в вершине излучины, а также у выпуклого берега непосредственно ниже вершины возникают зоны резкого отклонения потока воды, в которых создаются суводи.

Рис. 14. Прижимное течение на изгибе русла

Суводи могут существовать постоянно или возникать только в по­ловодье. На больших реках создаются крупные суводи, имеющие сферу действия десятки метров и скорость вращения воды в цен­тральной части — несколько метров в секунду.

В некоторых бассейнах суводь имеет свое местное название, напри­мер на Енисее—улово, на Иртыше—заводь.

Суводи представляют серьезное затруднение для судоходства. Суда в них теряют управление, резко смещаются в сторону берега, при этом нередко рвутся счалы и буксиры, ломаются рули и т. п.

Майданы — это беспорядочное вращательное движение воды в виде подвижных вихрей размером от нескольких сантиметров до нескольких метров в поперечнике. Майданы образуются над крупными подводными предметами при небольшой глубине над ними, а также во время паводка в тех местах, где идущий через пойму поток встре­чается под углом с другим потоком, идущим по меженному руслу. Кроме того, майданы возникают при интенсивных местных переформи­рованиях русла и на перекатах, при резких изменениях формы дна и т. д. Майданы неблагоприятны для судо­ходства, так как вызывают рыскли­вость судов.

Спорные воды — это май­даны, образующиеся у устьев при­токов и при слиянии рукавов. Чем ближе угол встречи к прямому, тем сильнее развиваются вихри, которые в поперечнике достигают нескольких метров.

Рис. 15. Свальное течение на пе­рекате

Прижимное течение создается у берега на участках ре­ки, где слив воды направлен к бе­регу. Например, на закруглениях русла прижимное течение возникает у вогнутого берега, так как вода вследствие инерции стремится сохранить прежнее прямолинейное на­правление, но, встречая на своем пути препятствие в виде вогнутого берега, прижимается к нему (рис. 14). На участках с прижимным тече­нием происходит раскат судов в сторону берега.

Затяжные течения возникают у входов в протоки (рис. 16). Особенно сильны затяжные течения во время половодий, когда расход воды в протоках значительно возрастает . Затяжные течения могут вызвать навал судна на остров.

На характер течения влияют также мосты,, подъездные дамбы, пло­тины, сооружения в русле и др.

Источник

Движение воды в руслах. Распределение скоростей по ширине и глубине

Течение — движение воды в русле водотока (реки, канала, ручья). Течение водотоков происходит под действием гравитации за счёт перепадов уровней воды.

В разных частях речных русел наблюдаются различные течения: на речных излучинах наблюдаются прижимные течения, которые затрудняют судоходство; на перекатах наблюдаются; в ухвостьях островов наблюдаются сбойные течения.

Течения водотоков характеризуются скоростью и направлением. План течений определяется на реке с помощью поплавков или гидрологических вертушек. На гидравлических моделях план течений изучается для определения воздействия водного потока на суда и гидротехнические сооружения. План течений рассчитывается разными способами, из которых одних из простых является метод Бернадского: струи распределяются пропорционально глубине потока в определённой степени. Существует множество численных математических двумерных и трёхмерных моделей по построению плана течений.

Течения водотоков отличаются по своему генезису от течений водоёмов, которые образуются за счёт различных причин: ветра, поступления водных масс из притоков, за счёт перекоса водной поверхности из-за разности давлений, плотностной неоднородности водных масс.

Течения реки бывают трёх видов: Верхнее течение, Среднее течение, Нижнее течение.

Верхнее течение образовывается в вершинах гор при скоплении воды из-за подземных вод и осадков, и оттуда река берёт своё начало.

В Среднем течении река обычно повышает свою полноводность за счёт притоков.

В Нижнем течении река обычно течёт медленно и плавно, зачастую образовывая извилины.

Читайте также:  Проведите границу бассейна самой многоводной реки в южной америке

Скорость течения – расстояние, на которое перемещается за единицу времени частица или объем воды в процессе движения. В реках, каналах и других водотоках обычно наблюдается турбулентный режим движения воды, который характеризуется перемешиванием водных масс и пульсацией С.т. как по величине, так и по направлению, поэтому скоростное поле потока представляет собой сложную картину, непрерывно меняющуюся во времени. В связи с пульсацией различают мгновенную и среднюю скорость. Мгновенной называется скорость в данной точке в момент ее измерения. В практических задачах гидравлики и гидрологии обычно используется осредненная во времени скорость. С.т. в точке потока, осредненная за достаточно продолжительный период времени, называется осредненной местной скоростью. В практической гидрометрии принято производить измерение С.т. в точке в течение 100 с, что для большинства случаев оказывается достаточным, чтобы осреднить пульсацию. Принятая в гидрометрии размерность С.т. — м/с. Существует большое количество методов измерения С.т. воды и приборов, действие которых основано на различных физических принципах. Наиболее распространены методы, основанные на регистрации числа оборотов лопастного винта (гидрометрические вертушки) и регистрации скорости плывущего тела (поплавки). Другие методы, применяемые главным образом при проведении научно-исследовательских работ и в лабораторных условиях, основаны на регистрации скоростного напора, силового воздействия потока, на принципе теплообмена, на измерении объема воды, вошедшей в прибор за время наблюдения, на применении ультразвука. Последняя группа методов — наиболее перспективна и активно разрабатывается. Распределение С.т. в речном потоке может быть весьма разнообразным в зависимости от типа реки (равнинная, горная и др.), морфологических особенностей, шероховатости русла, уклона водной поверхности. Общие закономерности в распределении скоростей по глубине и ширине реки таковы: в открытом потоке наибольшая скорость наблюдается обычно у поверхности, наименьшая — у дна (донная скорость, имеет конечное значение, не равное 0), местоположение наибольшей скорости в поперечном створе потока приближенно совпадает с наибольшей глубиной. Представление о распределении скоростей течения по глубине дает эпюра С.т. по вертикали, по ширине — эпюра поверхностных или средних скоростей по ширине реки. Наиболее полное представление о распределении скоростей в живом сечении водотока дают линии равных скоростей — изотахи, которые строятся по данным измерений в отдельных точках. Среднюю скорость потока в гидрометрии обычно находят путем деления расхода воды на площадь водного сечения. На практике при отсутствии измерений средняя скорость в реке (канале) находится по полуэмпирической формуле Шези v = c sqrt , где с — коэффициент Шези, зависящий от шероховатости русла и гидравлического радиуса R (приближенно равного средней глубине потока), i — уклон водной поверхности.

Источник



Исследование режимов течения жидкости: Методические указания к выполнению лабораторной работы, страница 2

При небольшой скорости движения жидкости краска, попав в поток жидкости в виде тонкой струйки, продолжает на всем протяжении потока двигаться струйкой (рис.1,а). Это значит, что частицы испытуемой жидкости также движутся струйчато (слоисто). Это ламинарный режим.

Рис. 1. Режимы движения жидкости

При увеличении скорости движения жидкости окрашен­ная струйка приобретает волнистое очертание (переходная зо­на), а затем внезапно разрушается на отдельные частицы, ко­торые далее двигаются по случайным неопределенно искрив­ленным траекториям, окрашивая весь поток жидкости. Это турбулентный режим. При таком режиме часть энергии затрачивается на поперечное перемещение и перемешивание час­тиц жидкости, вследствие чего турбулентный режим требует больших удельных затрат на перемещение жидкости, чем ла­минарный.

На основе эксперимента может быть построен график за­висимости числа Рейнольдса от скорости потока жидкости (рис.2), на котором будут отмечены моменты перехода режи­мов движения жидкости один в другой и наоборот.

Рис.2. Зависимость числа Рейнольдса от скорости потока жидкости

Рейнольдс определил два критических числа — верхнее и нижнее. Верхнее критическое число Рейнольдса соответствует моменту перехода от ламинарного режима к турбулентному: Re кр.в=12000. Нижнее критическое число Рейнольдса соответст­вует моменту перехода от турбулентного режима к ламинарно­му: Re кр.н = 998. На участке между этими двумя критическими числами Рейнольдса возможно существование как ламинар­ного, так и турбулентного режима движения жидкости. Это зависит от условий входа жидкости в трубу, шероховатости стенок и других случайных факторов.

В практических расчетах число Рейнольдса используется при определении сопротивления трубопроводов. Обычно для жестких трубопроводов критическое число Рейнольдса прини­мают Re кр =2320.

При Re i кр ламинарное движение яв­ляется вполне устойчивым: всякого рода искусственная турбулизация потока и его возмущения (сотрясение трубы, введение в поток колеблющегося тела и др.) погашаются влиянием вяз­кости, и ламинарный режим течения жидкости снова восста­навливается. При Re i > Re кр наоборот, турбулентный режим устойчив, а ламинарный не устойчив.

Если живое сечение потока отличается от круглого или в трубопроводе имеется большое число близко расположенных местных сопротивлений, критическое число Рейнольдса может отличаться от приведенного выше значения. Так, например, для гибких шлангов в системе гидропривода Re кр =1600.

От режима движения жидкости зависят не только потери на преодоление сопротивления трубопровода, но и энергетические параметры потока. На рис.3 показаны эпюры скоро­стей в живом сечении потока жидкости в круглой трубе.

Рис.3. Эпюры скоростей при ламинарном (а) и турбу­лентном (б)

режимах движения жидкости

Эпюра скоростей в случае ламинарного режима в трубо­проводе круглого сечения представляет собой параболоид вращения, ось которого совпадает с геометрической осью тру­бы. Сопротивление трубопровода в этом случае прямо про­порционально вязкости жидкости и обратно пропорционально числу Рейнольдса.

Расчетами можно доказать, что V ср = 0,5V max .

Эпюра скоростей турбулентного режима имеет ярко вы­раженное турбулизированное ядро потока с примерно одина­ковыми средними скоростями. Лишь частицы жидкости, близ­ко расположенные к стенке, испытывают от нее тормозящее действие сил трения и образуют так называемый ламинарный подслой. В этом случае сопротивление трубопровода в наи­большей степени определяется шероховатостью стенок трубы и имеет квадратичную зависимость от скорости жидкости и числа Рейнольдса. Средняя скорость потока V ср несколько меньше V max, а при абсолютно турбулентном режиме (что возможно только теоретически для идеальной жидкости) V ср = V max .

Источник

Скорости течения.

Скорости течения речного потока (или кинематики потока) подробно изучаются в курсе гидравлики. Здесь же мы обратим внимание лишь на те особенности кинематики потока, которые необходимо знать для понимания основных разделов гидрологии.

Вода в реках движется под действием силы тяжести. Скорость течения зависит от соотношения между величиной составляющей силы тяжести, параллельной линии продольного уклона потока и силы сопротивления, возникающего в потоке в результате трения движущейся массы воды между дном и берегом. Величина продольной составляющей силы тяжести зависит от уклона русла, а сила сопротивления — от степени шероховатости русла. Если сопротивление оказывается равным движущей силе, то движение воды становится равномерным. Если же движущая сила превышает силу сопротивления, движение приобретает ускорение; при обратном соотношении этих сил движение замедляется. Существует две категории движения воды — ламинарное и турбулентное.

Ламинарное движение представляет собой параллелоструйчатое движение. Ламинарное движение отличается следующими особенностями: 1) Все частицы потока движутся в одном общем направлении, не испытывая поперечных отклонений; 2) скорость течения воды плавно возрастает от нуля у стенка русла до максимума на свободной поверхности; 3) скорость течения прямо пропорциональна уклону свободной поверхности и зависит от вязкости жидкости.

Турбулентное движение имеет следующие особенности: 1) скорости потока пульсируют, т. е. направление и величина скорости в каждой точке все время колеблется; 2) Скорость течения от нуля на стенке быстро растет в пределах тонкого придонного слоя; в дальнейшем , по направлению к водной поверхности скорость возрастает медленно; 3) скорость течения воды не зависит или почти не зависит от вязкости жидкости и при отсутствии влияния вязкости пропорциональна корню квадратному из уклона.; 4) частицы воды перемещаются не только вдоль потока, но также по вертикали и в поперечном направлении, т.е. происходит перемещивание всей текущей массы воды.

Читайте также:  Кровавые реки в норильске

Таким образом в турбулентном движении установлено, что в открытых потоках амплитуда пульсаций увеличивается от поверхности ко дну. В поперечном сечении потока амплитуда пульсаций возрастает от оси потока к берегам.

В связи с извилистостью и разнообразными формами русел течение воды в реках почти никогда не бывает параллельно берегам , и водный поток разбивается на отдельные так называемые внутпенние течения. Эти течения размывают русло, переносят продукты размыва (наносы) и откладывают их в русле, в результате чего возникают косы , осередки, перекаты, перевалы и другие подводные препятствия.

В речном потоке существуют следующие внутренние течения: 1) течение, вызываемое кривизной русла; 2) течение, возникающее при вращении земли вокруг оси; 3) вращательное (вихревое) движение воды, обусловленное недостаточной обтекаемостью русловых форм.

Различают мгновенную скорость и местную скорость в точке потока. Мгновенной скоростью (U) (см. рис. 1) называется скорость в данной точке потока в данное мгновение. В прямоугольной системе координат мгновенная скорость имеет продольную составляющую, направленную горизонтально вдоль продольной оси потока и вертикальную — направленную по вертикальной оси потока.

В практических расчетах, как правило, приходится иметь дело со скоростями течения, осредненными во времени. Скорость течения в точке потока, осредненная за достаточно продолжительный период времени, называется местной скоростью и определяется выражением

где — площадь графика пульсации скорости в пределах периода времени T (рис. 1).

Рис. 1. График пульсаций продольной составляющей скорости течения воды.

Распределение скоростей в речном потоке.

Распределение скоростей течения воды в речном потоке разнообразно и зависит от типа реки (равнинная, горная и др.), морфометрических особенностей, шероховатости русла, уклона водной поверхности. При всем разнообразии существуют некоторые общие закономерности в распределении скоростей по глубине и по ширине реки.

Рассмотрим распределение продольных скоростейна различных глубинах по вертикали. Если от направления вертикали отложить величины скоростей и соединить их концы плавной линией, то эта линия будет представлять собой профиль скоростей. Фигура, ограниченная профилем скоростей, направлением вертикали, линиям поверхности воды и дна, называется эпюрой скоростей (рис. 2). Как видно из рисунка 2, наибольшая скорость (в открытом потоке) наблюдается обычно на поверхности (Uпов). Скорость у дна потока называется донной скоростью (Uд).

Если измерить площадь эпюры скоростей и разделить ее на глубину вертикали, то получим величину, которая называется средней скоростью на вертикали и выражается формулой

Средняя скорость на вертикали открытого потока располагается на глубине от поверхности, равной примерно 0.6h.

Нормальный вид профиля скоростей, показанный на рис. 2, в условиях естественных водотоков может искажаться воздействием различных факторов: неровностями дна, водной растительностью, ветром, ледяными образованиями и др.

При значительных неровностях дна скорость у дна может резко снижаться, примерно так, как показано на рис. 3.

При ветре по течению поверхностные скорости могут увеличиваться, а уровень воды несколько понижаться; при ветре против течения наблюдается обратная картина (рис. 4).

Подобно эпюрам скоростей на вертикалях можно построить эпюру скоростей по ширине реки (рис. 5), например поверхностных или средних скоростей на вертикалях очертания эпюры обычно следуют очертаниям дна; местоположение наибольшей скорости приближенно совпадает с положением наибольшей глубины.

При наличии ледяного покрова влияние шероховатости нижней поверхности льда обуславливает смещение максимальной скорости на некоторую глубину от поверхности, обычно на (0.3-0.4)h (рис. 6а). Если имеется подледная шуга, то смещение максимальной скорости вниз может быть еще более значительным, до (0.6-0.7)h (рис. 6б).

Представление о распределении скоростей в живом сечении дают линии равных скоростей — изотахи, которые вычерчиваются по данным измерений в отдельных точках. Характер изотах для открытого потока и при наличии ледяного покрова показан на рис. 7а. Для открытого потока изотахи обычно имеют вид плавных кривых, не замыкающихся в пределах живого сечения. По мере приближения ко дну расстояния между изотахами уменьшаются. При ледяном покрове часть изотах образует замкнутые кривые 7б.

Рис. 2 Эпюра скоростей течения Рис. 3. Эпюра скоростей на вертикали Рис. 4. эпюры скоростей течения

на вертикали у препятствия при ветре по течению (А)

и против течения (Б)

Рис. 5. Эпюра поверхностных

Источник

Распределение скоростей в речном потоке

date image2014-02-02
views image4738

facebook icon vkontakte icon twitter icon odnoklasniki icon

Распределение скоростей течения воды в речном потоке разнообразно и зависит от типа реки (равнинная, горная и др.), морфометрических особенностей, шероховатости русла, уклона водной поверхности. При всем разнообразии существуют некоторые общие закономерности в распределении скоростей по глубине и по ширине реки.

Рассмотрим распределение продольных скоростейна различных глубинах по вертикали. Если от направления вертикали отложить величины скоростей и соединить их концы плавной линией, то эта линия будет представлять собой профиль скоростей. Фигура, ограниченная профилем скоростей, направлением вертикали, линиям поверхности воды и дна, называется эпюрой скоростей (рис. 2). Как видно из рисунка 2, наибольшая скорость (в открытом потоке) наблюдается обычно на поверхности (Uпов). Скорость у дна потока называется донной скоростью (Uд).

Если измерить площадь эпюры скоростей и разделить ее на глубину вертикали, то получим величину, которая называется средней скоростью на вертикали и выражается формулой

Средняя скорость на вертикали открытого потока располагается на глубине от поверхности, равной примерно 0.6h.

Нормальный вид профиля скоростей, показанный на рис. 2, в условиях естественных водотоков может искажаться воздействием различных факторов: неровностями дна, водной растительностью, ветром, ледяными образованиями и др.

При значительных неровностях дна скорость у дна может резко снижаться, примерно так, как показано на рис. 3.

При ветре по течению поверхностные скорости могут увеличиваться, а уровень воды несколько понижаться; при ветре против течения наблюдается обратная картина (рис. 4).

Подобно эпюрам скоростей на вертикалях можно построить эпюру скоростей по ширине реки (рис. 5), например поверхностных или средних скоростей на вертикалях очертания эпюры обычно следуют очертаниям дна; местоположение наибольшей скорости приближенно совпадает с положением наибольшей глубины.

При наличии ледяного покрова влияние шероховатости нижней поверхности льда обуславливает смещение максимальной скорости на некоторую глубину от поверхности, обычно на (0.3-0.4)h (рис. 6а). Если имеется подледная шуга, то смещение максимальной скорости вниз может быть еще более значительным, до (0.6-0.7)h (рис. 6б).

Представление о распределении скоростей в живом сечении дают линии равных скоростей — изотахи, которые вычерчиваются по данным измерений в отдельных точках. Характер изотах для открытого потока и при наличии ледяного покрова показан на рис. 7а. Для открытого потока изотахи обычно имеют вид плавных кривых, не замыкающихся в пределах живого сечения. По мере приближения ко дну расстояния между изотахами уменьшаются. При ледяном покрове часть изотах образует замкнутые кривые 7б.

Источник

Adblock
detector