Меню

Как решать задачи с течением реки формулы

Задачи на движение по воде

Данный материал представляет собой систему задач по теме “Движение”.

Цель: помочь учащимся более полно овладеть технологиями решения задач по данной теме.

Задачи на движение по воде.

Очень часто человеку приходится совершать движения по воде: реке, озеру, морю.

Сначала он это делал сам, потом появились плоты, лодки, парусные корабли. С развитием техники пароходы, теплоходы, атомоходы пришли на помощь человеку. И всегда его интересовали длина пути и время, затраченное на его преодоление.

Представим себе, что на улице весна. Солнце растопило снег. Появились лужицы и побежали ручьи. Сделаем два бумажных кораблика и пустим один из них в лужу, а второй — в ручей. Что же произойдет с каждым из корабликов?

В луже кораблик будет стоять на месте, а в ручейке — поплывет, так как вода в нем «бежит» к более низкому месту и несет его с собой. То же самое будет происходить с плотом или лодкой.

В озере они будут стоять на месте, а в реке – плыть.

Рассмотрим первый вариант: лужа и озеро. Вода в них не движется и называется стоячей.

Кораблик поплывет по луже только в том случае, если мы его подтолкнем или если подует ветер. А лодка начнет двигаться в озере при помощи весел или если она оснащена мотором, то есть за счет своей скорости. Такое движение называют движением в стоячей воде.

Отличается ли оно от движения по дороге? Ответ: нет. А это значит, что мы с вами знаем как действовать в этом случае.

Задача 1. Скорость катера по озеру равна 16 км/ч.

Какой путь пройдет катер за 3 часа?

Следует запомнить, что скорость катера в стоячей воде называют собственной скоростью.

Задача 2. Моторная лодка за 4 часа проплыла по озеру 60 км.

Найдите собственную скорость моторной лодки.

Задача 3. Сколько времени потребуется лодке, собственная скорость которой

равна 28 км/ч, чтобы проплыть по озеру 84 км?

Итак, чтобы найти длину пройденного пути, необходимо скорость умножить на время.

Чтобы найти скорость, необходимо длину пути разделить на время.

Чтобы найти время, необходимо длину пути разделить на скорость.

Чем же отличается движение по озеру от движения по реке?

Вспомним бумажный кораблик в ручье. Он плыл, потому что вода в нем движется.

Такое движение называют движением по течению. А в обратную сторону – движением против течения.

Итак, вода в реке движется, а значит имеет свою скорость. И называют ее скоростью течения реки. ( Как ее измерить?)

Задача 4. Скорость течения реки равна 2 км/ч. На сколько километров река относит

любой предмет (щепку, плот, лодку) за 1час, за 4 часа?

Ответ: 2 км/ч, 8 км/ч.

Каждый из вас плавал в реке и помнит, что по течению плыть гораздо легче, чем против течения. Почему? Потому, что в одну сторону река «помогает» плыть, а в другую — «мешает».

Те же, кто не умеет плавать, могут представить себе ситуацию, когда дует сильный ветер. Рассмотрим два случая:

1) ветер дует в спину,

2) ветер дует в лицо.

И в том и в другом случае идти сложно. Ветер в спину заставляет бежать, а значит, скорость нашего движения увеличивается. Ветер в лицо сбивает нас, притормаживает. Скорость при этом уменьшается.

Остановимся на движении по течению реки. Мы уже говорили о бумажном кораблике в весеннем ручье. Вода понесет его вместе с собой. И лодка, спущенная на воду, поплывет со скоростью течения. Но если у нее есть собственная скорость, то она поплывет еще быстрее.

Читайте также:  Здешняя речка широкие пояса

Следовательно, чтобы найти скорость движения по течению реки, необходимо сложить собственную скорость лодки и скорость течения.

Задача 5. Собственная скорость катера равна 21 км/ч, а скорость течения реки 4 км/ч. Найдите скорость катера по течению реки.

Теперь представим себе, что лодка должна плыть против течения реки. Без мотора или хотя бы весел, течение отнесет ее в обратную сторону. Но, если придать лодке собственную скорость ( завести мотор или посадить гребца), течение будет продолжать отталкивать ее назад и мешать двигаться вперед со своей скоростью.

Поэтому , чтобы найти скорость лодки против течения, необходимо из собственной скорости вычесть скорость течения.

Задача 6. Скорость течения реки равна 3 км/ч, а собственная скорость катера 17 км/ч.

Найдите скорость катера против течения.

Задача 7. Собственная скорость теплохода равна 47,2 км/ч, а скорость течения реки 4,7 км/ч. Найдите скорость теплохода по течению и против течения.

Ответ: 51,9 км/ч; 42,5 км/ч.

Задача 8. Скорость моторной лодки по течению равна12,4 км/ч. Найдите собственную скорость лодки, если скорость течения реки 2,8 км/ч.

Задача 9. Скорость катера против течения равна 10,6 км/ч. Найдите собственную скорость катера и скорость по течению, если скорость течения реки 2,7 км/ч.

Источник



Как найти скорость течения реки: методика и рекомендации. Примеры решения задач

Многие люди хотя бы один раз в своей жизни путешествовали по реке на лодке, байдарке или катере. Для таких путешествий важно знать, с какой скоростью течет вода в реке, чтобы иметь возможность определить необходимое для перемещения на определенное расстояние время. В данной статье рассмотрим вопрос, как найти скорость течения реки, а также решим две физические задачи по данной теме.

Особенности течения воды в реках

Многие замечали, что одни реки текут медленно, и поверхность воды является гладкой. Обычно это крупные реки, например, Дон или Волга. Такое течение с точки зрения физики называется ламинарным, то есть слои жидкости перемещаются по прямым линиям и не смешиваются друг с другом. Более мелкие же речушки в некоторых местах буквально «бурлят». Этот тип течения характерен для рек горной местности. Он называется турбулентным. В отличие от ламинарного, здесь мелкие объемы воды перемещаются по хаотичным траекториям, на поверхности наблюдаются водовороты и пена.

Русло реки также оказывает существенное влияние на скорость течения. Так, известно, что вблизи берега и дна вода течет медленнее, чем в центральной части русла внутри ее объема. При своем движении слои воды задерживаются препятствиями, в виде неоднородностей дна и берегов, за счет трения о них. Причем каменистое дно уменьшает скорость перемещения воды сильнее, чем дно глинистое или песчаное.

Ширина русла и водоносность

Для более глубокого понимания вопроса, как найти скорость течения реки, важно знать еще один момент. Дело в том, что одна и та же река в разных местах может течь с различной скоростью. Причиной является изменение площади сечения ее русла, которое внешне связано с изменение ширины. Справедливости ради отметим, что не только изменение ширины, но и колебания в глубине влияют на быстроту течения воды (чем глубже, тем медленнее).

В виду сказанного выше, о скорости перемещения воды в реке имеет смысл говорить, если на достаточно длительном участке (километры и более) параметры ее русла колеблется незначительно, и река не имеет на этом участке притоков.

Читайте также:  Как определить тип питания реки волги

Более надежной характеристикой для любой реки является ее водоносность. Под водоносностью понимают объем воды, проходящий через вертикальное сечение русла за единицу времени. Водоносность не зависит от параметров русла, однако, она так же, как и скорость, изменится, если на рассматриваемом участке реки имеется приток.

В данной статье мы ограничимся предоставленной информацией о водоносности и перейдем к вопросу, как найти скорость течения реки.

Практический метод определения скорости воды в реке

Рассмотрим простую практическую методику, которая отвечает на вопрос, как находить скорость течения реки.

В первую очередь необходимо выбрать участок реки, где движение воды будет ламинарным, и русло не будет менять своей ширины. Затем, на берегу следует забить колышек. Он будет служить начальной отметкой. От первого колышка, используя измерительную ленту, следует отсчитать вдоль берега расстояние 10 метров, затем, забить второй колышек. Он будет конечной отметкой. Все подготовительные работы сделаны. Теперь можно переходить непосредственно к измерениям.

Как находить скорость течения реки? Для этого понадобится какой-нибудь легкий предмет, который может плавать. Например, маленькая палочка, шишка, лист бумаги, перо птицы и так далее. Предмет следует бросить в воду напротив первого колышка. При этом необходимо включить секундомер. Как только предмет, двигаясь по реке, достигнет второго колышка, секундомер нужно остановить, и зафиксировать измеренное время t.

Описанные эксперимент рекомендуется повторить несколько раз (4-5). Затем, нужно рассчитать среднее значение измеренного времени. Обозначим его t¯. Оно равно:

Источник

Задачи на движение по реке

Задачи на движение по реке трудны для пятиклассников, а взрослые недоумевают: чего же там трудного? Бревно или плот плывут со скоростью течения реки Vт., которая считается постоянной.

Скорость катера в стоячей воде Vс. называют собственной скоростью катера. Скорость катера по течению реки Vпо теч. больше собственной скорости катера на скорость течения реки: Vпо теч. = Vс. + Vт.

Скорость катера против течения реки Vпр теч. меньше собственной скорости катера на скорость течения реки: Vпо теч. = Vс. + Vт.

Эти соотношения полезно проиллюстрировать рисунком.

Скорость катера по течению больше его скорости против течения на две скорости течения.

Задача 1. Скорость катера в стоячей воде равна 15 км/ч, а скорость течения реки — 3 км/ч. Какова скорость катера по течению и против течения реки?

1) 15 + 3 = 18 (км/ч) — скорость катера по течению реки,

2) 15 — 3 = 12 (км/ч) — скорость катера против течения реки.

Ответ. 18 км/ч и 12 км/ч.

Обратим внимание: скорость катера по течению реки — это сумма его собственной скорости и скорости течения реки, а скорость катера против течения реки— это разность его собственной скорости и скорости течения реки, поэтому скорость по течению реки больше скорости против течения на удвоенную скорость течения.

Задача 2. Скорость моторной лодки по течению реки равна 48 км/ч, а против течения — 42 км/ч. Какова скорость течения реки и собственная скорость моторной лодки?

1) 48 — 42 = 6 (км/ч) — удвоенная скорость течения реки,

2) 6: 2 = 3 (км/ч) — скорость течения реки,

3) 48 — 3 = 45 (км/ч) — собственная скорость.

Ответ. 3 км/ч и 45 км/ч.

Задачи для закрепления берём в учебнике «Математика» для 5 класса (Просвещение, С. М. Никольский и др.) или в книге для учителя «Обучение решению текстовых задач в 5-6 классах» (раздел Книги на сайте www.shevkin.ru). Приведём три задачи из учебника.

Читайте также:  Как вычислить ширину реки не переплывая ее

В качестве примера применения формируемого умения приведём задачу из сборника для подготовки к ГИА-9.

Задача 3. Теплоход проходит по течению реки до пункта назначения 160 км и после стоянки возвращается в пункт отправления. Найдите скорость течения реки, если скорость теплохода в неподвижной воде равна 18 км/ч, стоянка длится 2 часа, а в пункт отправления теплоход возвращается ровно через 20 часов после отплытия из него.

Составлять и решать уравнение с неизвестным в знаменателе научат в 8 классе, если новый стандарт не отменит изучение таких уравнений, а находить скорость теплохода по течению и против течения реки надо научиться в 5 классе.

Источник

Задания №11. Задачи на движение по воде

Также смотрите видеолекцию «Текстовые задачи» здесь .

Кстати, что делать, если дискриминант решаемого квадратного уравнения намечается слишком большой, – смотрите здесь и здесь ).

Задача 1.

Моторная лодка прошла против течения реки 120 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.

Задача 2.

Байдарка в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 20 минут, байдарка отправилась назад и вернулась в пункт А в 16:00. Определите (в км/ч) собственную скорость байдарки, если известно, что скорость течения реки 2 км/ч.

Задача 3.

От пристани А к пристани В отправился с постоянной скоростью первый теплоход, а через 2 часа после этого следом за ним со скоростью на 2 км/ч большей отправился второй. Расстояние между пристанями равно 168 км. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно. Ответ дайте в км/ч.

Задача 4.

Пристани A и B расположены на озере, расстояние между ними 234 км. Баржа отправилась с постоянной скоростью из A в B . На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B . Найдите скорость баржи на пути из A в B . Ответ дайте в км/ч.

Задача 5.

Расстояние между пристанями A и B равно 72 км. Из A в B по течению реки отправился плот, а через 3 часа вслед за ним отправилась яхта, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошел 39 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 3 км/ч. Ответ дайте в км/ч.

Задача 6.

Путешественник переплыл море на яхте со средней скоростью 28 км/ч. Обратно он летел на спортивном самолете со скоростью 532 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Задача 7.

По морю параллельными курсами в одном направлении следуют два сухогруза: первый длиной 130 метров, второй — длиной 120 метров. Сначала второй сухогруз отстает от первого, и в некоторый момент времени расстояние от кормы первого сухогруза до носа второго составляет 600 метров. Через 11 минут после этого уже первый сухогруз отстает от второго так, что расстояние от кормы второго сухогруза до носа первого равно 800 метрам. На сколько километров в час скорость первого сухогруза меньше скорости второго?

Смотрите также видеорешение аналогичной задачи.

Источник

Adblock
detector